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1. Introduction

Let us think about ways to find both eigenvalues and eigenvectors of tridi-
agonal matrices. An important special case is the computation of singular
values and singular vectors of bidiagonal matrices. The discussion is ad-
dressed both to specialists in matrix computation and to other scientists
whose main interests lie elsewhere. The reason for hoping to communicate
with two such diverse sets of readers at the same time is that the con-
tent of the survey, though of recent origin, is quite elementary and does
not demand familiarity with much beyond triangular factorization and the

* The author is grateful for partial support under Contract ONR N00014-90-J-1372.
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Gram—Schmidt process for orthogonalizing a set of vectors. For some read-
ers the survey will cover familiar territory but from a novel perspective. The
justification for presenting these ideas is that they lead to new variations of
current methods that run a lot faster while achieving greater accuracy.

Tridiagonal matrices have received a great deal of attention since the
1950s. The (i,7) entries of these matrices vanish if [¢ — j| > 1 and the
interest in them stems from the fact that they include the most narrowly
banded representations of a matrix that can be obtained by a finite number
of similarity transformations using rational expressions in the matrix en-
tries together with square roots. This statement needs a little justification
because the rational canonical form (RCF) is, by construction, the matrix
with fewest nonzero entries that can be achieved by rational operations on
the data. For an n x n matrix the RCF has only n parameters while a
tridiagonal form has 3n — 2, but 2n — 1 when normalized, and so RCF seems
preferable.

The fact is that, apart from theorists doing exact computations, the RCF
is not used in eigenvalue computations. The main reason is that the rep-
resentation is too condensed for standard floating-point computation. The
coefficients of the characteristic polynomial have to be known to many, many
more decimal places than do the matrix entries in order to determine the
eigenvalues to the same accuracy.

Beyond that one might add that the RCF is a Hessenberg matrix (entry
(¢,7) vanishes if # — j > 1) and, by design, there are no further useful
similarity transformations that can be applied to it. In contrast to the RCF
there are infinitely many tridiagonal matrices in a similarity class and so
there is hope of computing a sequence of them that converges to bidiagonal
or diagonal form. This is where our interest lies.

It should be mentioned that the tridiagonal form is probably also too
condensed for the most difficult cases, (see Parlett (1992)), but it is rich
enough to suffice for many applications and we shall stay with it here.

Our topic, the new qd algorithms, will be developed as the consequence
of two ideas.

The first concerns the representation of tridiagonal matrices and we men-
tion it briefly here. In the eigenvalue context there is no loss of generality
in supposing that our tridiagonals are normalized so that all entries in po-
sitions (7,7 + 1) are either 0 or 1. Zeros here make calculations easier so we
may assume that all these entries are 1. Such tridiagonals are denoted by
J. Most, but not all, such J permit triangular factorization

J=LU,

where the precise forms L and U are shown at the beginning of the next sec-
tion. It is clear that in the n xn case L and U together are defined by 2n —1
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parameters; exactly the same degree of freedom as in J. Section 3 argues
that the pair L, U is preferable to J itself. Consequently all transformations
on tridiagonals should be re-examined in this representation.

The second idea relates to the LR algorithm (LR) discovered by H. Rutis-
hauser in 1957, (see Rutishauser (1958)), and presented in Section 5 here.
When LR is rewritten in the L, U representation one obtains the (progres-
sive) qd algorithm. The letters q and d are lower case because they do not
stand for matrices and the matrix-computation community tries to reserve
capital letters for matrices. Thus q here has nothing to do with the Q of
the QR factorization.

In the new representation the LR algorithm spends most of its time com-
puting the triangular factorization not of a single matrix, but of a product,
namely UL. It is not well enough appreciated that finding the LU factor-
ization of any product BC' is equivalent to applying a generalized Gram-—
Schmidt process to the rows of B and the columns of C so that B = LP*,
C = QU, and P*Q is diagonal. When this Gram—Schmidt process is applied
to UL in an efficient manner one obtains a little-known variant of qd, called
the differential qd algorithm (dqd), that requires a little more arithmetic
effort than qd itself. Rutishauser discovered dqd, (see Rutishauser (1958))
near the end of his life and never mentioned the shifted version dqds that K.
V. Fernando and I discovered, (see Fernando and Parlett (1994)), indepen-
dently of Rutishauser’s work, in 1991, while trying to improve on the Dem-
mel and Kahan QR algorithm (Demmel and Kahan, 1990) for computing
singular values of bidiagonals. The connection of dqd with the generalized
Gram-Schmidt process on bidiagonals is new and constitutes the second
idea that underpins this survey.

The presentation here runs completely counter to history. The paper by
Fernando and Parlett (1994), develops dqds in the singular-value context,
gives historical comments and shows the connections with continued frac-
tions. However, none of that is necessary and it is simplicity we pursue
here.

This survey develops several qd algorithms (six in all) in a matrix context
in the most elementary way. It is not difficult to see several directions in
which these ideas may be generalized or modified to good effect.

The differential forms of qd algorithms are the right ones for parallel
computation.

A sceptic might say that since no one uses LR algorithms there is no point
in finding fancy versions of them. In the general case there is still much work
to be done in finding clever shift strategies that approach an eigenvalue in
a stable way. However, in the symmetric case even the current simple shift
strategies achieve high relative accuracy in all eigenvalues and are between
2 and 10 times faster than QR; see Fernando and Parlett (1994). Yet the



462 BERESFORD N. PARLETT

most powerful argument in favor of qd algorithms may turn out to be the
efficient computation of accurate eigenvectors.

The general plan of this survey is conveyed adequately by the table of
contents.

2. Bidiagonals versus Tridiagonals

Bidiagonal matrices of a special form will play a leading role in this es-
say. Whenever possible 6 x 6 matrices will be used to illustrate the general
pattern.

1 (5} 1
I 1 us 1
_ lp 1 uz 1
L= l3 1 ! Ug 1
l4 1 Us 1
l5 1 Ug

To save space these matrices may be written as
. 1 1 1 1 1 1
L = bidiag ( L Iy s L Is ) ,

. 1 1 1 1 1
U = bzdmg( wu s us w us e > .

The pair L,U determine two triangular matrices; first

- -

Ul 1
lhhur L1 +uo 1
_ . luy g+ ug 1
J=LU= l3us ls + uq 1 ’
lqug ly + us 1

lsus  Is +ug |

which may be written

1 1 . 1
J =tridiag | u; l1 +uo ° . ls + ug ,

liuy lous L4 lsus
and second
[ U + U 1 ]
usly ug + o 1
J = UL = ugly  ug+13 1

ugyls ug + 14 1
uslq us+1s 1
u6l5 Ue ]
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which may be written

1 1 . 1
J =tridiag | ui+0 ug + o ° o Ug .
usgly uslo L ugls

Note that both tridiagonals have their superdiagonal entries, that is, entries
(4, 7+ 1), equal to 1. Also note that J' = L='JL. The reader should note
the pattern of indices in J and J’ because frequent reference will be made
to them throughout the survey.

The attractive feature here is that because the 1’s need not be represented
explicitly the factored form of J requires no more storage than J itself; there
are 2n — 1 parameters for n x n matrices in each case.

Advantages of the factored form

1 L,U determines the entries of J to greater than working-precision accu-
racy because the addition and multiplication of I’s and ’s is implicit.
Thus Jy; is given by l;_1 + u; implicitly but by fI(l;_; + ;) explic-
itly.

2 The mapping L,U — J is naturally parallel; for example, [ * u gives
the off-diagonal entries. In contrast the mapping J — L,U, that is,
Gaussian elimination, is intrinsically sequential.

3 Singularity of J is detectable by inspection when L and U are given,
but only by calculation from J.

4 Solution of Jx = b takes half the time when L and U are avail-
able.

Disadvantages of the factored form

The mapping J — L,U is not everywhere defined. Even when the factor-
ization exists it can happen that ||L|| and |U|| greatly exceed ||J||. This
is very bad for applying the LR algorithm but harmless when eigenvectors
are to be calculated. So we should be careful to consider the goal before
stigmatizing a process as unstable. Moreover in the eigenvalue context we
are free to replace J by J — oI = LU for some suitably chosen shift o that
gives acceptable L and U.

Frequently we make the nonzero assumption: lju; #0, j=1,...,n—1.
If u, = 0 then a glance at J' = UL shows that its last row is zero. However,
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it is not valid to simply discard l,—; along with u,. In other words we do
not have a factored form of the leading (n — 1) x (n — 1) principal submatrix
of J' unless l,_1 is negligible compared to u,_;. Similarly if u; is zero we
must not ignore I;. In fact any zero values among {l;, u;; j=1,...,n—1}
are readily exploited.

Splitting: If I; = 0, j < n, then the spectrum of J is the union of the spectra
of two smaller tridiagonals given in factored form by {l;, u;; i = 1,7} and
{liy ui; i =j+1,n}. Here l, = 0.

Singularity: If u; = 0, j < n, then zero is an eigenvalue. However, some
computation is necessary to deflate this eigenvalue and obtain L and U
factors of an (n — 1) X (n — 1) matrix. One pass of the qd algorithm (given
later) will suffice in exact arithmetic.

Any tridiagonal matrix that does not split, or its transpose, is diagonally
similar to a form with 1’s above the diagonal, that is, a J matrix. So for
eigenvalue hunting there is no loss of generality in using this normalization.
However, if the normalization is not convenient then there is an alterna-
tive factorization of tridiagonals that was considered by H. Rutishauser; see
Rutishauser (1990). Let

N:bz’diag(11111111111>,

B = bidiag( “ €2 e € € )
q1 q2 qs g4 qs a6

Then

€1 €2 [ ] €5
NB =tridiag| @1 e1+qo . L es5 + g6
q q2 L4 q5

and

€1 €2 L €5
BN =tridiag| @1 +e1 g2 + e2 ) ) g6 .
q2 g3 o gs

Note that, after we identify e; = l;, ¢ = u;, for all i, J = DNBD~! and
J' = DBND™! with D = diag(1,e1,e1€z,...,6€1 -+ €5).

Since all the various qd algorithms relate naturally to J matrices we will
stay with the L, U factors rather than the N, B representation.

In the past most attention has been paid to the positive case: I; > 0,
i=1...,n—1, u; >0, j =1,...,n. Note in passing the following
standard results.
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Lemmal If Lju; > 0, i = 1,...,n — 1, then J is symmetrizable by a
diagonal similarity and the number of positive (negative) u; is the number
of positive (negative) eigenvalues.

Lemma 2 If lju;y; >0, i =1,...,n— 1, then J' is symmetrizable by a
diagonal similarity and the number of positive (negative) u; is the number
of positive (negative) eigenvalues.

For a real symmetric or complex Hermitian matrix a preliminary reduction
to tridiagonal form has proved to be a stable and eflicient step in computing
the eigenvalues. In the general case preliminary reduction to tridiagonal
form has been less successful. Stability is not guaranteed for any current
methods; see Parlett (1992). Sometimes users are lucky but as larger and
larger matrices are tried unsatisfactory experiences are more frequent. It
may well be that the tridiagonal form is too compact for the difficult cases.
The attentive reader will note in the following pages that some of the algo-
rithms can be extended to fatter forms, such as block tridiagonal, but such
ideas will not be pursued here.

3. Stationary qd Algorithms

Triangular factors change in a complicated way under translation. Given L
and U of the form given in Section 2 the task here is to compute L and U
so that

J—ol=LU—-0cl=1LU

for a given suitable shift . Equating entries on each side shows that

Li+ugp1—0 = L+, i=0,...,n—1, 1 =0,
liuyy, = l_iﬂi, i=1,...,n—1.
These relations yield the so called stationary qd algorithm:

stgd(o): U = u1 — 03
fori=1,n-1

i = L/ .
U1 =li+uipr—o -1
end for.

Naturally it fails if @; = 0 for some 7 < n.

At this point the sceptical reader might object that stqd(c) is exactly the
same algorithm that would be obtained by forming J — o7 and performing
Gaussian elimination. Indeed if stqd(c) is executed with the operations
proceeding from left to right, for example,

Uip1 = fUSUSUL + wigr) — o) — I),
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then the two procedures are not just mathematically equivalent but also
computationally identical. However, it is not necessary to follow this left-
to-right ordering. For example, one could write

i1 = (b —li — o) + w1

and, if the compiler respects parentheses, then stqd(o) will quite often pro-

duce different output than Gaussian elimination on J — ¢I. If [; and I; are

much larger than ;3 then the second form is more accurate than the first.
The preceding thoughts lead to an alternative algorithm, easily missed,

for L and U. It involves more arithmetic effort and an auxiliary storage cell

but has some striking advantages in accuracy for finite-precision arithmetic.
To derive the algorithm define variables {¢;} by

tiv1 = U1 — Ui =L — i — 0.
Observe that

tiyi = L—lLu/t—o
= li('ﬁi —uz)/ﬁ, -0
= tzll/’L_Lz - 0.

For reasons that are not clear Rutishauser called the associated algorithm
the differential form of stqd. We call it dstqd.

dstqd(o): t; = —o;
fori=1,n-1
U =u; +1
I, = ui(li/ai)
tiv1 = ti(L;/u;) — o
end for
Up = Up + In-

In practice the t-values may be written over each other in a single variable
t. If the common subexpression [;/4; is recognized then only one division
is needed. Thus dstqd exchanges a subtraction for a multiplication so the
extra cost is not excessive.

At first sight stqd may not seem relevant to the eigenvalue problem but
if A is a very accurate approximation to an eigenvalue then dstqd(\) is
needed to approximate the associated eigenvector; see Section 12. In this
application huge values among the {&@;} are to be expected and do not have
deleterious effect on the computed eigenvector. In fact dstqd(c) may be
used to find eigenvalues too by extracting a good approximate eigenvalue
from the t-values for a shift.
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4. Progressive qd Algorithms
This section seeks the triangular factorization of J' — oI, not J —oI:
J —ol=UL-0ol=LU

for a suitable shift ¢. Equating entries on each side of the defining equation
gives the so-called rhombus rules of H. Rutishauser (see Rutishauser (1954),
in German and, in English, Henrici (1958)):

Uil +liy1 —o =L+ 4;41 and Ly = L.

These relations give the so-called progressive qd algorithm with shift which
we call qds(o).

qds(o): 41 =u1 +1; — oy
fori=1,n-1
li = Liuiyr /4 )
Uil = Uip1 +lig1 —0 = ;
end for.

The algorithm qds fails when @; = 0 for some ¢ < n. In contrast to the
stationary algorithm the mapping o, L, U — L,U is nontrivial even when
o = 0. When ¢ = 0 we write simply qd, not qgds.

At this point the skeptical reader might object that qds(o) is exactly the
same algorithm that would be obtained by forming J' — oI and performing
Gaussian elimination. Indeed if the operations are done proceeding from
left to right, for example,

i1 = FUFI(FU i1 + L) — o) — ),
then the two procedures are not just mathematically equivalent but also
computationally identical. However it is not necessary to follow this order-
ing. For example, one could write

Qir1 = (lig1 — bi — &) + Ui

and, if the compiler respects parentheses, then the output will quite often
be different.

There is an alternative implementation of qds that is easy to miss. In fact
Rutishauser never wrote it down. The new version is slightly slower than
qds but has compensating advantages. Here we derive it simply as a clever
observation leaving to later sections the task of making it independent of
qds.

As suggested in an earlier paragraph we might define an auxiliary variable

div1 = U1 — i — 0 (= Uig1 — lit1).
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Observe that
div1 = U1 — (liuipr /) — 0
= (wit1( — L)/%) — o
= (ui1di/i;) — 0.
Rutishauser seems to have discovered the unshifted version two or three
years before he died, perhaps 15 years after discovering qd, but he did not
make much use of it; see Rutishauser (1990). He called it the differential

qd algorithm (dqd for short) and so we call the new shifted algorithm dqds
(differential qd with shifts).

dqds(o): dy = u; — 03
fori=1n-1
U =di +1;
l; = li(uig1/%;)
diy1 = di(uit1/%) — o
end for
Uy = dp,.

By definition, dqd = dqds(0). In the positive case dqd requires no subtrac-
tions and enjoys very high relative stability; see Section 8. In practice each
d;+1 may be written over its predecessor in a single variable d. Looking
ahead we mention that the quantity min |d;| gives useful information on the
eigenvalue nearest 0.

5. The LR Algorithm for J Matrices

As mentioned in Section 1 our exposition reverses the historical process.
Rutishauser discovered LR by interpreting qd in terms of bidiagonal matri-
ces, a brilliant and fruitful insight. This is worth explaining. By definition,
the LR transform of J is J' and of J’ is the matrix J” defined in two steps
by
J =LU, J'=UL.

Now qd applied to L and U yields L and U and so defines J” implicitly.
There is no need to form J' or J”.

When shifts are employed the situation is a little more complicated. It is
necessary to look at two successive steps with shifts ¢; and os.

In shifted LR
J1 — 0'1.[ = L1U17
Jo = Ui1ly + o1,
J2 - O'QI = L2U2,
J3s = UsLg + ool
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LR 0'2)

) \LZ,UQ / \La,Us

qds(oe — o1) qds(os — 02)

Fig. 1. Relation of LR to qds

In other words, the shifts are restored so that Jy, Jp, J3 are similar. Note
that

Jo=ULi+o01I = L{YJi—o1)Li+o1l
= L7'NL.

However, if J; is not to be formed one cannot explicitly add o; back to the
diagonal. On the other hand

Jz - 0’2] = U1L1 - (0’2 - 0’1[) = L2U2.

Thus to find Ly and Uz from L; and Uj it is only necessary to apply
qds(o2 — 01). In other words to get qds equivalent to LR with shifts {o;}2,
it is necessary to use the differences (¢; — 0;—1) with qds. In LR the shifts
should converge to an eigenvalue of the original J or J'. In qds the shifts
should converge to 0 and u, — 0, l,—1 — 0 too and all shifts must be accu-
mulated. It is worth recording the relationship in a diagram in Figure 1.

In practice the LR algorithm avoids explicit calculation of the L’s and
U’s and the transformation J; — J;41 is effected via a sequence of ele-
mentary similarity transformations. As implemented in the late 1950s and
early 1960s, LR proved insufficiently reliable and was displaced by the QR
algorithm in the mid 1960s. In one important class of applications both
LR and qds were accurate and efficient: the positive case [; > 0, u; > 0 for
all 4.

For comparison purposes we present two implementations of LR: the ex-
plicit and the implicit shift versions. Let

1 1 'y 1
J =tridiag | o o ° ) O ,
I3} B2 J Bn-1

let J—oI = LU, J=UL+ oI and write J in the same notation as J. The
matrix L may be written as a product of lower-triangular plane transformers
Ni~ So

U=N} - -NYJ—-oI), J=UNi---Ny_1+ol
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1
€; 1
(i 4+ 1,%). The following diagram shows a typical stage.

( 1 0)((1]'6]‘_1 dj 1 ) _ Bj—l dj 1
—€; 1 Bjej_l ﬁj Ajp1 — O 0 0 dj+1 '

dj 1 10 dj +e€j 1
0 djnr ( e 1 ) = | edinn diy |-
0 Bj+n J

€j5j+1 5j+1

and the active part of IV; is ( ) , where the multiplier e; is in position

LR (explicit shift o): di = a; — o;

fori=1,n-1
if d; = 0 then exit (fail)
e; = Bi/d;
&; =d; + (e; + o)
dit1 = aiy1 — (& +0)
Bi =dit1 % e;

end for

an, =d, + 0.

In practice we write d and e for d; and e;.
To derive the implicit shift version we note first that

J=N7Y - NJYNy - Nay

and, of more importance, that the 2 x 2 submatrix

Bj—l d;
Biej—1 Bj

has rank one in exact arithmetic. Thus the multiplier e; could be computed
from e; = Bjej-1/ Bj_l and then the shift ¢ disappears from the inner loop.

The initial value e; = f1/(a1 —o) is the only occasion on which o appears.
Indeed if oy > ¢ then much of the information in ¢ is irretrievably lost.

The algorithm is sometimes described as chasing the bulge 3;e;_1 in po-
sition (j+1,j — 1) down the matrix and off the bottom as j = 2,3,...,n—1
and n. We write 6 instead of d to emphasize that these quantities differ
from the corresponding ones in the explicit shift algorithm.

LR (implicit shift o): § = a1
if 6 = o then exit (fail)

e=01/(6 — o)
fori=1n-1
&;=6+e

Bi = Bi —ex* (& — aiy1)
d=a;41 —e
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if 3; = 0 then exit (fail)
e=ex*Bit1/6;

end for

G = 6.

The attraction of this algorithm is that it employs nothing but explicit
similarities on J.

6. Gram—Schmidt Factors

This section shows that dgd could have been discovered independently of qd.

To most people the Gram-Schmidt process is the standard way of pro-
ducing an orthonormal set of vectors gy, q,, ..., q; from a linearly indepen-
dent set f,, fo, ..., fr- The defining property is that span(q,, qs,-- -, qj) =
span(fy, fg,---, f;), for each j = 1,2,... k. The matrix formulation of
this process is the QR factorization: F = QR, where F = [f1, fo,. -, fil,
Q =1[4qy,99,---,q;) and R is k x k and upper triangular.

The generalization of this process to a pair of vector sets {f,, fa,---, fi}
and {g1, 9o, - - -, g} is so natural that there can be little objection to keeping
the name Gram—Schmidt; the context determines immediately whether one

or two sets of vectors are involved. Denote by F* the conjugate transpose
of F.

Theorem 1 Let F' and G be complex n x k matrices, n > k, such that
G*F permits triangular factorization:

G*F = LDR,
where L and R are unit triangular (left and right), respectively, and D is
diagonal. Then there there exist unique n x k matrices Q and P such that
F=QR, G=PL*, P*Q=D.

Remark. When G = F the traditional QR factorization is recovered with
an unconventional normalization: generally Q = QD2 F*F permits
triangular factorization when, and only when, the leading k — 1 columns of
F are linearly independent. _
Remark. In practice, when n = k and D is invertible one can omit @
and write F = P~1(DR), G = PL* and still call it the Gram-Schmidt
factorization. The important feature is the uniqueness of Q and P. The
columns of Q and rows of P* form a pair of dual bases for the space of
n-vectors (columns) and its dual (the row n-vectors). There is no notion
of orthogonality or inner product here; p;q; = 0 says that p; annihilates
4 1 #7.

We omit the proof of the theorem to save space.

The Gram-Schmidt factorization leads directly to the differential qd al-
gorithms. Let us show how.
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Corollary 1 Let bidiagonal matrices L and U be given as in Section 2. If
UL permits factorization

UL=LDR=1LU,
where L and R are unit bidiagonal, then there exist unique matrices P and
@ such that

U=LP*, L=QR, P*Q=D.
Remark. In words, apply Gram-Schmidt to the columns of L and the rows
of U, in the natural order, to obtain U/ and R. Then note that U = DR

Note that if u; = 0, ¢ < n, then UL does not permit triangular factor-
ization. However, the theorem allows u, = 0. When u, # 0 then U is
invertible and so is . In this case we can rewrite the factorization as

KL=DR=U, UK '=L, K=DQ™".

The matrix K is hidden when we just write UL = LU. However, the
identification of K with the Gram—Schmidt process goes only half way in the
derivation of the dqd algorithm. The nature of the Gram-Schmidt process
shows that P and Q are upper Hessenberg matrices. Fortunately Q and
P are special Hessenberg matrices that depend on only 2n parameters, not
n(n—1)/2. We are going to show that they may be written as the product of
(n—1) simple matrices that are non-orthogonal analogues of plane rotations.
That means that L may be changed into U and U into L by a sequence of
simple transformations and neither K, @ nor P need appear explicitly.

Definition 1 A plane transformer, in plane (i,7), ¢ # j, is an identity
matrix except for the entries (¢, 1), (4, 7), (4,%) and (j, 7). The 2x2 submatrix
they define must be invertible.

Let us describe the first minor step in mapping L — U, U — L. We seek
an invertible 2 x 2 matrix such that

T z 1 0 _ 1 1
-y w L 1 - 0 1)’
up 1 w —z } 0 . det,
0 wu y L =
where det = zw + yz and * may be anything. A glance at the last column
of the top equation shows that z = w = 1. The 0 in the (2,1) entry on the
right shows that y = {; and the 0 in the (1,2) entry in the second equation

shows that x = u;. Thus det = wz + yz = w1 + I} = 4. ;From the (2,1)
entry of the second equation we learn that

’U,2l1 = Uy = ildet = ilﬁl.
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. 1 1
ﬁk—-l [ R 1 0
0 1 0 le_1 di 1
Iy 1 0 ug4r 1
1 .

Fig. 2. Active entries

Finally, and of most interest,
* = ugx/det = uguy /1.

This is the intermediate quantity d2 in dqd and we see it here as something
that gets carried to the next minor step. If we write d; = u; we obtain the
start of the inner loop of dqd:

= di+1,
l = ll(’U,Q/le),
d2 = d1(U2/121).

The typical minor step is similar. It is instructive to look at the matrices
part way through the transformation L — U, U — L as shown in Figure 2.
At minor step k the plane transformed is (k,k + 1) and the active part

of the plane transformer is d 1 on the left and 1 -1 on the
—l 1 I dg

right, with det = g, ;. Finally at the end of minor step (n — 1) the trailing
2 x 2 submatrices are

<an_11) ond 10\ _( 1 0 (1 0)
0 1 ln—l dn B ln—l 1 0 dn '

If d,, # 0 we simply multiply row n on the left by d,, and divide column n
on the right by dn, as a final similarity transformation. When d,, = 0 the
matrices L and R remain invertible. Thus 4, = d,f, =0-1=0.

So we have derived the dqd algorithm without reference to qd. Of more
significance is the fact that the quantities d;, ¢ = 1,...,n, provide useful
information about UL that qd does not reveal and so dqd facilitates the
choice of shift.

7. The Meaning of d;

Theorem 2 Consider L and U as described in Section 2. If U is invertible
then the quantities d;, i = 1,...,n, generated by the dqd algorithm applied
to L and U satisfy

&' = (UL g, i=1,...,n.
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Proof. The algorithm may be considered as transforming L to U by premul-
tiplications and U to L by inverse multiplications on the right as described
in the previous section. At the end of the (kK — 1)th plane transformation
the situation is as indicated below:

[ ] [ J [ ]
tg_1 1 o 1 0
Grp_1L = 0 1 0 : by dp 1 =UG{L,,
lk 1 0 Uk+1 1
[ ] [ ] [ J [ ]

where
Gi-1=®;_1Px—2---®1, &; transforms plane (i, + 1), Go = I.

The striking fact is that row k£ of Gi_1L and column k of U G,:l are single-
tons. If e; denotes column j of I, then

echk_lL = efc, erdy = UG;_llek, 1<k<n.
Rearranging these equations yields, for k =1,2,...,n,
di' = (ekGr-1)(Giliendy )
= (kLU ex) = [(UL) -
0

In the positive case (I; > 0, uw; > 0), UL is diagonally similar to a
symmetric positive-definite matrix.

Corollary 2 In the positive case,

-1
n
(Z dz_1> < )\min(UL) < min d;.
i=1 i
Proof. For any matrix M that is diagonally similar to a positive-definite
symmetric matrix

max my; < Amax[M] < trace[M].

Take M = (UL)~!. O

Even in the general case, as u, — 0, min;|d;| becomes an increasingly
accurate approximation to |Amin|-
8. Incorporation of Shifts

The algorithms and theorems presented so far serve only as background.
LR, QR and qd algorithms are only as good as their shift strategies. In
practice one uses qds and dqds, the shifted versions of qd and dqd.



THE NEW QD ALGORITHM 475

The derivation of dqds(c) in terms of a Gram~Schmidt process is not obvi-
ous. Formally we write UL—o¢I = (U—oL"')L = LU and apply the Gram-
Schmidt process to the columns of L and the rows of U — 0 L~! to obtain

L=GR, U-oL'=LF, FG=D.
Eliminating G yields
L=(GDYWDR)=F'U, U-oL'=LF
At first sight the new term —oL~! appears to spoil the derivation of F' as
a product of plane transformers. However, it is not necessary to know all
the terms of L~! but only the (i + 1,4) entries immediately below the main

diagonal. The change from the unshifted case is small. The active parts of
the two transformations are given by

di 1\[(1 0\ (@ 1
(_li 1>(li 1>—(0 1), as before,

and the new relation

(di 1 (1—1)_ 10 . det
O'li Ui+1 — O lz dz - li di+1 ’

The last row yields

det =d; +1; = 4;, as before,
[i -det = [iﬁi = ol; + (w41 — 0)l; = ui11l;, as before,
diy1-det = —ol;+ (uiy1 — 0)d; = uj11d; — o;.

This is dqds(o).

If one looks at the two matrices part way through the transformations
L —U,U~-0oL"! — L, the singleton column in the second matrix (from
Theorem 2) has disappeared and the relation of d; to (UL)~! is more com-
plicated.

Theorem 3 Consider L and U as described in Section 2. If U is invertible
and UL — oI permits triangular factorization, with o # 0, then the inter-
mediate quantities d;, ¢ = 1,...,n, generated by dqds(o) applied to L and
U satisfy

14 U[(ﬁUL)_l]k,k_l

4o = [(UL) ik

We omit the proof.

9. Accuracy

The differential qd algorithms dqd and dqds are new to the scene of matrix
computations. One feature that makes them attractive is that they seem
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to be more accurate than their rivals. In particular, in the positive case,
all eigenvalues can be found to high relative accuracy as long as the shifts
preserve positivity.

Let us begin with an extreme example.
Ezample 1. Take n = 64, u; = 1, i = 1,...,64, I; = 216 = 65536,
i=1,...,63. Although det(LU) = 1 the smallest eigenvalue is O(107304).

In just 2 iterations dqd computed Amin to full working precision. In con-
trast qd returns 0, a satisfactory answer relative to the matrix norm. Yet
dqd does preserve the determinant to working accuracy, provided underflow
and overflow are absent, while qd, LR and QR do not.

The reason for dqd’s accuracy is that ig4 = dgg reaches the correct tiny
value through 63 multiplications and divisions. There are no subtractions.

A little extra notation is needed to describe the stability results compactly.
When there is no need to distinguish I’s from u’s we follow Rutishauser and
speak of a qd array

Z = {’U,l, ll') uz, l2) oo )l’n—laun}-

The right unit for discussing relative errors is the ulp (1 unit in the last place
held) since it avoids reference to the magnitudes of the numbers involved.
In Example 1 the error in the computed eigenvalue < %ulp despite 2 x 63
divisions and multiplications.

Given Z the dqds algorithm in finite precision produces a representable
output Z. We write this Z = fl(dqds) - Z. Now we introduce two ideal qd
arrays Z and Z such that, in ezact arithmetic, dqds with shift o maps Z
into Z. Moreover Z is a tiny relative perturbation of Z, and Zisa tiny
relative perturbation of Z. See Figure 3.

The proof of the following result may be found in [2].

Theorem 4 In the absence of division by zero, underflow or overflow, the
Z diagram commutes and, for all k, uk (1) differs from w (Ix) by 3 (1) ulps
at most, and 4y, (I,) differs from iy (Ix) by 2 (2) ulps, at most.

The proof is based on making small changes to Z and Z so that the computed
sequence of d’s is exact for Z and Z. There is no requirement of positivity
so it is possible to have ||Z|| >>> ||Z||. Some people call this a mized
stability result because one had to perturb both input and output to get an
exact dqds mapping. For example, such mixed accuracy results are the best
that can be said about the trigonometric functions in computer systems; the
output is within an ulp of the exact trigonometric function of a value within
one ulp of the given argument.

Theorem 4 does not guarantee that dqds returns accurate eigenvalues in
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7 dqds 5
computed
b

change each change each
Iy by 1 ulp i and I by 2 ulps
ux by 3 ulps

7 dqds 3

exact

Fig. 3. Effects of roundoff

all cases, even when we only want errors to be small relative to ||J||. We
call such accuracy absolute rather than relative:

A — Ai| < ellJ]| versus |\ — Ai| < € max{|Ag, | A}

In Fernando and Parlett (1994) a corollary to Theorem 4 establishes high rel-
ative accuracy for all eigenvalues computed by dqds in the positive case. The
corollary is stated in terms of singular values but the algorithm computes the
squares of those singular values, that is, the eigenvalues of a positive-definite
matrix similar to a product LU.

Given these nice results it is natural to seek a conventional backward
error analysis that says that Z is the exact output of dqds applied to some

array 5, where either ||Z— Z | < Mé||Z|| or, better, [ui— % | < Melui,
I; — B3| < Me|l;], for all 4, which we write as [Z— Z | < Me|Z|. Here M is
some reasonable constant.

This was one task given to Yao Yang for his doctoral research here and
we quote here two of the results from his 1994 paper. Yang’s first discovery
was an unpleasant surprise. Even in the positive case it is not always true

that |Z— Z | < Me|Z|. Here is an example.

Ezample 2. There is no small backward error for dqd.
n 5, o =0, single precision: 1+ 1078 > 1,
u = (1,1,1,1,1),
I = (10%10% 10% 10%,0).

We omit tiny irrelevant terms in what follows.

@ = (10*+1,10%,10%10%, 10716 — 10720),
4 exactly (10* +1,10* + 107%,10* + 1078, 10* +10712,10716 — 10720),
[ = (1-107%1,1,1,0),



478 BERESFORD N. PARLETT

(0,1-107%,1,1,1),
(10* + 1,104,104, 10, 0).

~0 £0o
Il

Thus #; = 1 must be changed to %= 0 in order to have dqd- % = 7. The
o
last 3 steps in computing Z are instructive.

1. fig= Gg— o +i1 = 101 = 10* + (1 — 10~%) = 1 — 10~*
whereas the true 1 is 10% + 104 which would yield the ideal Us= 1.
2. Ti= hia1/ %2= 104/(1 — 10~4) = 10 + 1 instead of 10%.

3. U= iy — ?1= (10* +1) — (10 + 1) = 0 instead of 1.
Note that ﬁl + Ll)1= uy + I exactly!

This result shows why there was no backward error analysis in Fernando
and Parlett (1994). Further investigation by Yang showed that the fault is
in the formulation of the task, not in the algorithm. Recall from Section 2
that associated with any qd array Z are matrices L,U and their products J
and J'.

Here is Yang’s second result.

Theorem 5 If dqds(c’) maps Z into Z in finite-precision arithmetic obey-
ing (9.1) below and if both arrays are positive then there is a unique array

[ ~
Z such that in exact arithmetic dqds(c) maps Z into Z. Moreover the

tridiagonal matrices J' and j " associated with Z and % satisfy
'~ J'| < 5elJ'],
where ¢ is the roundoff unit.

The inequality is interpreted element-by-element. This is a strong result
and consistent with Theorem 4. The amplification factor 5 is a worst-case
bound. Contemplation of the proof shows that in most cases the errors in
executing dqds(o) in finite precision can be accounted for by perturbing J’s
entries (not Z’s) by 1 or 2 ulps.

The strength of the result comes from the simplicity of the proof and what
makes the proof simple is that, in exact arithmetic, dqds(o) is equivalent to

qds(o) and qds brings in no intermediate quantities. Thus we may define %

by Z= qds™! - fl(dqds)Z. Here fI denotes a result obtained with floating-
point arithmetic.

The diagram in Figure 4 illustrates the strategy.

The invertibility of qds(c) is proved by observing that if the output is
positive and given then qds(o) statements may be used in reverse order
(n,n—1,...,1) to recover the unique input.



THE NEwW QD ALGORITHM 479

2 fl(dqds) 5

0Z qds

z

Fig. 4. Definition of 2

The model of arithmetic assumes the presence of a guard digit so that
subtraction has the same relative accuracy as the other fundamental oper-
ations.

fl(aOb) = (aOb)(1 + n), (9.1)

where 1 < ¢, the roundoff unit (or arithmetic precision) which does not
depend on a,b or O, and O = +,* or /.

Proof of Theorem 5. First we write down the relationships satisfied by Z.
Subscripted variables 7y, § and € denote roundoff quantities as needed by the
model (9.1).

Aldgds) : di = fl(w1 — o) = (u1 ~ 7)1 + 1p);
for i=1n-1
= fl(di+ )= (di + L)1 +€)
ti = fl(uig1/8:) = uit1(1 + &) /44, t; should stay in a register

(
ii = fl(ll * ti) = liui+1(1 + 61)(1 + 6;)/’111
div1 = fl(di*t; — o) = (diwip1 (1 + 8)(1 + %) /% — o)(1 +7))
end for
Uy, = dp.

By definition gds- §= VA , exactly, so with le =0,
qds: for i=1n-1
N o ? 9
Uy = U —li1+ i —o
~ o
I = Lty /i
end for
~ o 7
Uy = Up ~lp_1 — 0.

o o
Of course Z is determined in the order ﬁn, (l)n_l, ﬂn_l, ln_2,... ,ﬁl, but that
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is irrelevant here. Next we eliminate @; and [; using the two sets of equations
from fl{dqds) and qds. In what follows we omit terms that are O(e?).

Fori=1

o o N
up+ 11 -0 = 1= ((ur—o)(1+)+h)1+e)
= up+lh—o+(u—o)(y+e)+el.

In the positive case Apmin(J) < any ‘pivot’ in elimination, that is, o <
Amin(J) < min; u;. Thus, in the positive case

o o]
uy + 11 —u1— I U1'26+l16<2€
up + Uy wi+l T
For2<i<n
o o . A
U+l = Ui+l +o

(di + 1)1+ &) + Licawi (L + 8i-1) 1+ 6,_1) /i1 + 0
dicqui(1 4+ 6i—1)(1+%i-1)(1 + 7o) (1 + &) /i1
—o(l+%-1)(1 + &)

+L(1+€) + Liqui(1+6;,-1)(1 + 5;_1)/’04’_1 + 0.
Now we can combine the terms involving u;, noting that

Gi—1 = (di—1 + Lic1) (1 + €i-1).

So, omitting terms of O(e?), we have

° di_
U+l = witli+ ﬂ}_‘*_ll.—luz’(éi—l +Yie1 + Vi1 T €6 —€io1)
i— G-
li—
+d- 11+1l~ 1“1'(‘51'—1 + 81 —€ic1) +eli — (Vi +€).
i— G—

Now use repeated terms like §;_1 — €;—1 to simplify the roundoff terms:

o
Ui+ 1 = wi+li+ui(8i-1 — €i—1)
di_1 li1

+—  wiyio1 + ————u;f_
di—1+ 11 Y- di—1+ i Yi%-1
d;—
+ (_d. 1l+ll. T 0) (V-1 + €) + liei. (9.2)
i— i—

Thus, in the positive case, using o < u;,

di—1u4
|1?L,-+(l)i —(ui + )| < ui2e+uie+lie+max{z—lu-,a}2e
di_1+li-—1

< u;2€ + uze + lie + u;2e = u;5e + lie < Se(u; + ;).
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For the subdiagonal entries we have, almost immediately,

00 ~

lLittir1= Lt = Luga (14 8)(1 + &), (9-3)
S0
%o
lithit1 =l <%
Liujva
in all cases, positive or not. This completes the proof. a

In the course of the proof the general case has been covered. Backward
stability is guaranteed in neither a relative sense nor a norm sense. When
there is element growth, that is, when |di| or |di| or |I;| greatly exceeds |i;]

or |u;|, then locally (in position %) J differs strongly from J'.
To state the result in terms of arrays treat diag(M) as a linear array and
define

ones = (1,1,...,1),
I, -

I = (o, znl)

d = (dl,...,dn).
Corollary 3 Inthe general case, in the absence of under/overflow or divide
by zero, it is element growth that governs 3’ — J'. Entry-by-entry,
[diag(J') — diag(J)| < e{2lul + |ollones| + |i] + [a] + 2ld]},

\of fdiag(J') — of fdiag(J")| < 2e|offdiag(J"))-

Proof. Relation (9.2) in the proof of Theorem 5 holds in the general case.
By omitting 0(62) terms we may undo the equation for d; from fi(dqds).

di—1u; d;
4 -+,  \Tr 1+ 6-1)/(1+6i—1)(1 + vi-
di1+1;_1 <1+%{ 1+">( +ei—1)/ (1 + 6i—1) (1 +vie1)

= (di+0—7_1di)(1 = bic1 —Yie1 +€1)
= (di +0)(1+ O(e)),

Similarly we undo the equation for [;_1 :
li-1uy 5 ,
— = [;1(1 i 1+6_1)1+6_
di 1+ 0L % 1( + € 1)/( + 1)( +0; 1)
= li_l(l + 0(6))
Now we can rewrite (9.2) in terms of d;, ;_; and ;.

L+ 0 = w+li4u(io1 — €1) + (di + 0)vim1 + 1181,
+divi_q + ei(di + 1;).
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So
o ~
|6+ 1 —(ui + 1) < |wil2e + |dile + |ole + |li_1]e
+|dile + |dile,
omitting O(e?) terms, as claimed in the corollary. The off-diagonal entries of

3 do enjoy backward stability in a relative sense since the product rhombus
rule is preserved to within 2 ulps as shown in (9.3) in the proof of Theorem 5.
O

10. Speed

All algorithms of LR type succeed or fail according to the sequence of shifts.
The basic algorithms, when all shifts are zero, are just too slow. On the
other hand zero is the natural shift when J is singular — unless it provokes
element growth.

In practice all these algorithms find one or two eigenvalues at a time,
deflate them from the matrix and proceed on the remaining submatrix. so
the task, at each step, is to pursue these somewhat contradictory goals.

P1. The shift should approximate an eigenvalue, preferably a small one.
The more accurate the better.

P2. The shift should not cost too much to compute.

P3. The shift should not lead to element growth in the transformation.

The positive case. Here P3 may be satisfied by always approximating the
smallest eigenvalue from below. In this way positivity is preserved and dqds
delivers high accuracy. Moreover the auxiliary quantities {d;} provide upper
bounds on Apin(J) that become very tight. In Theorem 3 the complicated
quantity [(UUL)_I];C,;C_I turns out to be positive and thus Apin[J] < di + 0.
So,

Amin(J) < min(d; + o).
J

With little extra expense dqds can return both the value of min; d; and the
last index k at which the minimum occurs.

When ¢ = 0 The lower bound happens to be the Newton approximation to
Amin(J) from 0 for the characteristic polynomial of J. It is too expensive and
too pessimistic to be a frequent choice except at the start of the algorithm.

The index k is useful in the selection of a cheap and realistic estimate
of Amin(J). We say that Z (and J) is in the asymptotic regime when
k =n-—1or k = n. At this point we remind the reader that all the
algorithms we consider here may be run from the bottom of the matrix to
the top, and so we may assume that £ > n/2. In the asymptotic regime
min; d; is an extremely good estimate of Amin(J) but, of course, is a little
too large.
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A simple strategy that has satisfactory results in comparison with rival
methods is to select a small subarray of Z surrounding row k and com-
pute the Newton approximation to 0 for the polynomial associated with the
subarray. This approximation is essentially

min(n,k+p) -1
2 4

i=k—p
for p =2 or 3. This expression is modified appropriately when k is close to
n. In the current implementation both Z and Z are available at the end of a
transformation. Consequently, given dg, it is easy to recompute neighboring
d; from d;+1 = diu;y1/(d; + ;) — o going up or down.

Another strategy was proposed by Rutishauser (1960). If a shift o causes
qds (or dqds) to fail because 4, < O but all 4; > 0, ¢ < n, then o +
i, is an extremely good lower bound on Amin(J), good to O(|o — Amin|3)
asymptotically, see Fernando and Parlett (1994) for a new proof. So the bad
transform is rejected and dqds is applied with the good shift.

In order to show that these qd algorithms are worth attention we quote
some timing results from Fernando and Parlett (1994). On a test bed of
several challenging cases of orders 20 to 100 a dqds code with the above
shift strategy was between 4 and 11 times faster than LINPACK codes
besides being more accurate. In more recent comparisons with code used in
LAPACK (QR-based) routines the dqds program was, on the average, twice
as fast.

It is likely that the current shifts will be replaced by better ones soon.

The symmetric indefinite case. Given a T that is symmetric, tridiagonal,
but not positive definite we reduce it to the positive-definite case as follows.
First compute the lower Gershgorin bound by

bound = a1 — |B1]
fori=2,n-1
bound = min{bound, o; — |Bi—1| — |5il}
end for
bound = min{bound, an, — |Bn-1|}.
Next factor T 4 bound - I = LU, with care, as follows:
u1 = ay + bound
fori=2n
li-1 = Bi/ui
u; = (max{ay, bound} — l;_1) + min{a;, bound}
end for.

It is because both bound and I;_, are positive that we can use max and min
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to avoid computing (big + little) — big, the perennial danger when adding
three quantities.

Now dqds may be applied to the positive case. Note that the eigenvectors
are not altered by a shift. So, if eigenvectors are wanted, they may be
computed as shown in Section 12 and the eigenvalues of 7" found afterwards
by taking a Rayleigh quotient. This is to avoid subtracting bound from the
computed eigenvalues that are very close to bound.

The general case. There are several open problems. We should expect to
reject transforms from time to time when excessive element growth occurs.
It is also possible to compute a dstqd transform (the stationary algorithm)
at the same time as dqds for the same access to Z. =

In other words, it is feasible to compute LU = LU —¢I and LU = UL—oI
at the same time. If o is not too close to 0 then computation can proceed if
either of the pairs LU and L, U avoids element growth. It is also possible
to apply dqds and dstqd to the reversal of Z, that is, (upn,ln—1,un—1,-..).
Our goal is to push min; |d;| to the closest end of the array.

When excessive growth occurs in Z it is not hard to evaluate the recurrence
that governs the derivative of {p;} with respect to the shift. Here p; is the
characteristic polynominal of the top ¢ by ¢ submatrix of J. Given p} as well
as p; at a bad place one can calculate a new shift that will take the new p;
away from 0.

For each Z there is a bad set Bad(Z) in C consisting of values that should
not be used as shifts for qds. It would be useful to understand something of

~

how Bad(Z) changes under qds; that is, how does Bad(Z) relate to Bad(Z)?

An alternative approach is to develop block versions of these algorithms.

11. Parallel Implementation

The algorithms qds and stqd seem to be irrevocably sequential in nature.
In contrast the differential versions are less so.

Let us consider dqds from this point of view. The algorithm may be split
into two parts.

Part 1. Compute d = (d1,...,d,) via

dy=ui —o, diy1 =diuin/(di+ 1) —0, i=1,...,n.
Part 2. As vector operations on [, u and d compute

t=d+1, l=(,...,0l,-1,0),

[=1xd/a,
where

dl = (d27d37 cee 7dn,0)-
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Part 2 is ideal for vector or parallel processors.

It is interesting that Part 1 may, in principle, be executed in O(log, n) time
on a parallel processor but unfortunately the method seems to be unstable in
finite precision. See the interesting paper of Mathias (1994). The technique
is called ‘parallel prefix’ in computer science communities

The idea is to consider each d; as a ratio p;/¢; and rewrite the recurrence
as

pit1 _ pi(uiy1 — o) + gilio

Gi+1 pi + qil;

(pi+1)=(uz-+1—a Uli)(pi):M‘(pi)
qi+1 1 l; qi ‘\Na )’

Note that each 2 x 2 matrix M; is known a priori and we can start with
(p1,q1) = (u1 —0,0). Consequently d; is completely determined by column 1
of

or

NG) = MiM;_y - M.

The problem has been reduced to computing all the partial products indi-
cated above. There is an intriguing way to compute the N’s from the M’s
in 2(log, n) parallel steps.

The pattern is indicated in the following diagram in Figure 5. This com-
plicated algorithm can be written compactly in the following form.
Standard MATLAB notation is
i:j:kl=(i+5,1+25...,k); [i:kl=[i:1:k].

Let p = [log, n].
Initialize N(i) = M;, i=1,2,...,n.
for j =207, i =[j:j:n; N(@)=N()*N(~j/2);
for j = 2P~ 111" 4 = 3% j/2:5:n]; N(i)=N@G)*N@G—75/2).
When ¢ = 0 the M’s are all lower triangular and the task is simplified

significantly and is well suited to implementation on the CM2 and CM5
massively parallel computers.

The strong potential for parallel implementation lies, not here, but at a
coarser level in the computation of eigenvectors once the eigenvalues are
known accurately. This is the topic of the next section.

12. Eigenvectors

Suppose that Z (= L,U) is given along with an accurate approximation A
to an eigenvalue of J = LU. If A\ were exact then

(LU - ADw =0, |v]|=1 (12.1)
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Fig. 5. Parallel prefix

is the equation defining a wanted eigenvector v. By applying the stationary
qd algorithm dstqd(A) to Z we obtain, in the absence of breakdown, Z such
that

LU~ M =LU. (12.2)

Since L is unit triangular it is invertible and it remains to solve Uv = 0,
that is, @v; +v541 =0, i =1,...,n — 1. A little care must be exercised
to avoid unnecessary overflows and underflows. Let k& be the index of a
maximal entry of v. Then

v =1, ’U1;=—’Ui+1/’l_1,i, i=k—-1,...,1, Ui+l = —vjiy, j=k,...,n—-1

Note that #, is not used and this is appropriate since #%, must vanish in
exact arithmetic.

In practice there are two important changes to be made to the simple
algorithm given above. First note that the matrix of interest is often not J
but 371J3 for some diagonal 3. So (12.2) changes to

BTILUB ~ M = (B7'LB)(B~'UB) (12.3)

and

B‘lt'fﬁ:bidiag(ﬁl Ao B ¢ Bar )

U2 ® L] Un
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where
B = diag(1, 51,1582, ...,01P2 - Bn-1).

So the bidiagonal system is
v + Giviy1 =0, t=1,...,n—-1. (12.4)

The second observation is that, even for extremely accurate approximations
A, the final value 4@, is far from vanishing and the output from (12.4) or
(12.3) is too often disappointing. Roundoff error spoils U.

There is a remedy which is not complicated and appears to be new. In
addition the new approach yields very good values for k, the index of a
maximal or nearly maximal component of v. At the heart of dstqd is the
t-recurrence:

tit1 =t * li/(ui +t)—A (12.5)
with ¢; = —A. Once the t-vector is known 4 = (ﬂl,...,ﬂ,_t) and | =
(I1,...,1,—1,0) may be found by vector operations: u = u+¢,1 =uxl/u.

The only thing that distinguishes a true eigenvalue A from a non eigenvalue
is that, in exact arithmetic, 0 = @, = u, + t,. This gives a final value

t, = —u, and the 2-term recurrence may be solved in reverse order:
li ) g (ti+1 + )\)
t. = U; _ - 1 = —-— 12.6
o=l (ti+1 +A Li—tiv1— A (12.6)

In exact arithmetic with an exact A the t-vect(;)ors from the forward and the
backward passes will be the same but we use ¢; to denote the output of the

backward pass, In practice t and and i are not the same. We choose a k to
satisfy

o . o
[te— tk | = l’njlnltj— tj |.

Then we define t = (t1,.. ., t, %k+1, ce 2,;), and compute an approximation
x to v from
T =1, T; = —ﬁi$i+1/(ti+ui), i=k~-1,...,1, (12.7)
O .
Tjy1 = —CL'j(tj +uj)/,3j, j=k,...,n—1 (12.8)

Note that t’s are used going back from k, while s are used going forwards.

An attractive feature of (12.7) and (12.8) is that huge values of ¢; and
gj, including oo, do not impair the accuracy: From (12.6) t; = oo implies
z; = 0fori =k—-1,...,1, and gj+1= oo implies gj +u; = 0 implies
zj+1 =0, for j = k,...,n — 1. Wherever x; = 0 the adjacent z-values are
simply related by B;—1zi—1 + Biziz1 = 0 when B 1LUB is symmetric and
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by li—1ui—1xi—1/Bi-1 + Bizi+1 = 0, in general. So, in the symmetric case,
the full algorithm is: zp =1,

. ~Biv1Tiy2/ s, if £;41 =0,
? “ﬁixi-l—l/(ti + ui), otherwise, 1=k —1,...,1,
—~Bi1zi-1/8;, if z; =0,
Tjt1 = % g 1/b; - : (12.9)
—x;(t; +u;)/Bj, otherwise, j=k,...,n—1

With (12.9) small entries in « are found by multiplication and division, not
subtraction.
Let us now justify the choice of k. Suppose that all arithmetic operations

3 . o .
are exact but, because X is not an exact eigenvalue, the t-recurrence is not

justified in using gnz —u,. Consequently there is truncation error and z is
not an eigenvector. What can we say about «? If T = 8~ LU is symmetric
then the residual

r=(T-\)x

vanishes in every component except the kth and at this position |rg| =

|te— %k |. It is this result that justifies our choice of k. The assumption of
symmetry is not essential but it simplifies the exposition. In what follows
recall that 82 = l;u;.

There are three cases. We consider r; and use (12.9).

j<k. Bi—1zj—1 + (li-1 +uj — Nz + BT
2
= .’I)j{—'_’?;l+lj—1+uj—)\—ﬁj}.
Uj_l
Now use (12.5):
lj_lu]'__l t'_ll'_l
ri = xje——2—I 4 lLgtu A | LI At
J J { tj—1+ uj—1 71 J ti—1+ uj1 J

= Tj- 0.
The case j > k is similar but with gi replacing t; and we omit it.

j=k. Br—1Tk—1 + (lk—1 + ur — ATk + BrTrt1

Bii _
= I ——é—+lk_1+uk—)\—uk .

A little algebraic simplification together with (12.5) shows that

te—1lk—1 o } 0
o e g
tg—1+ uk—1

Roundoff errors make very little difference. More precisely it can be shown
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that with appropriately chosen 2 ulp perturbations to L, U, ¢, Z,w, but not

to A, the equation corresponding to (T' — Az = e (tx— gk) holds exactly.
Here e, is column k of 1.
The significance of this result is that when X is a very accurate approx-

imation the quantities #; and #; are quite often less than e]|T)| and their
difference is even smaller. Here € is the precision of the arithmetic unit.
Thus we compute vectors & whose residual norms ||(T — AI)x||/||x| are sig-
nificantly less than €||T||. This never happens with standard inverse iteration
(i.e. TINVIT in the LINPACK package).

The cost for  from (12.9) appears to be 3n divisions (n for ¢, n for 2,
n for &) but for vector calculations dstqd may be rewritten so that the n
divisions in (12.9) become n multiplications: I; = £;/u;, tiy1 = Lilit; — N,
z; = —l;z;_1. By way of comparison standard inverse iteration needs n calls
for random numbers plus 2n divisions for a vector. So the new method is
no slower than standard inverse iteration.

When two eigenvalues differ by about /€ ||LU|| the vectors & computed
by (12.9) need to be refined by another step of inverse iteration in order to
obtain eigenvectors orthogonal to working accuracy.

When m eigenvalues of T are very close (differing by n ulps, say) we can
take care to pick m different values of k in order to try to produce outputs
that are orthogonal. There is no need to perturb computed eigenvalues that
are equal to working precision. This careful choice of k suffices in many
but not all cases of clusters. Fortunately there is an extra modification
of the method that takes care of the difficult cases by using appropriate
submatrices of T. Since this modification is independent of gqd algorithms
it will not be described here, but see Parlett (1994).

The method described in this section is ‘embarrassingly’ parallel. Each
processor is assigned a copy of Z and one or more eigenvalues. No commu-
nication is needed between processors.

13. Singular Values of Bidiagonals
Let

. b b . bn—
B=bzdzag(a1 1 o 2 . . n-1 o )

The goal is to find B’s singular values o1, . . ., 0,,. Since {02} is the eigenvalue
set of B! B this is the eigenvalue problem of a positive-semidefinite symmetric
tridiagonal with the constraint that BB is not to be formed explicitly. Note
that B!B is singular if, and only if, a; = 0 for one or more i values. In these
cases BB is a direct sum of smaller tridiagonals and the 0 singular values
may be deflated by applying qd or dqd independently to the appropriate
submatrices as will be explained below. If some b; = 0 the reduction to
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a direct sum is immediate and requires no arithmetic effort. Consequently
there is no loss of generality in concentrating on the generic case: a; # 0,
i=1,...,n,0;#0,5=1,...,n—1
We forsake symmetry and formally put BB in the J-matrix format.
Define

A =diag(1, w1, T1T2, oy, WL Tin—1), i = a;b;.
It is readily verified that
AB'BA™'=J=1LU,

where

g 1 1 . ° 1
L= wiog (D )
.. 1 1 ° 1
U = bidiag ( o o . . o2 ) ,
and so we define [; = b2, u; = a?. Thus the singular-value problem leads to
the positive case and dqds may be used to find the o2 in increasing order.

One begins with dgd (not dqds) in order to capture any tiny singular
values and to make use of the lower and upper bounds in Corollary 2 to
Theorem 2.

The only blemish is that the original data have been squared and thus
the domain of application is smaller than for QR techniques since we must
avoid overflow and underflow. However, there is an algorithm oqd described
in Fernando and Parlett (1994) that has the same range as QR but the
advantages of qd. The price that oqd pays for the extended range is that it
must take a square root in the inner loop in the same way that QR techniques
do. The response to this choice is easy: If exponent range permits then
square up and use dqds, otherwise use oqd.

In order to find the right singular vector for oz we apply the stationary
algorithm dstqds to L, U with shift 02 to obtain L and U satisfying

LU = A(B'B — o?1)A™!
whence
B'B — c2I(ATILA)(ATIUA)

and the techniques of Section 12 may be envoked.
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